Surgical Treatment of Fractures by Osteosynthesis


Cite item

Full Text

Abstract

At the present stage of development of Traumatology and Orthopaedics, there are many methods on the surgical treatment of fractures, but none of them is not an absolute solution and is capable of to ensure a satisfactory result. The most common of all methods continues to maintain metalosteosynthesis using plates and screws. After analyzing all the stages of development and focusing on the modern forms of plates used in traumatology and orthopedics, was record the main directions of development of these technologies. On examples dismantled most popular designs used on different segments. Formulated the basic framework and requirements predetermine the desired effect. However, with all the variety of technologies, throughout the lifetime of these methods of osteosynthesis, and remains an unsolvable problem concomitant intraoperative adverse effect on the regeneration of bone tissue this the application of any of the most modern implants. That does not eliminate the risk of delayed or absent fracture healing.

About the authors

N.N. Burdenko Voronezh State Medical Academy, 10 Studencheskaia Str., Voronezh, 394036,
Russian Federation

Author for correspondence.
Email: Trauma.doct@gmail.com
graduate student of the department of traumatology and orthopedics N.N. Burdenko Voronezh State Medical Academy Russian Federation

References

  1. Bogdanovich U.YA. Nakostnyj kompressionnyj osteosintez plastinami pri lechenii perelomov dlinnyh trubchatyh kostej [Compression plate osteosynthesis plates in the treatment of fractures of long tubular bones.] Sbornik nauchnyh trudov LNIITO im. R.R. Vredena. Leningrad, 1981; 28: 20-28.
  2. Buachidze O.SH. Nakostnyj stabil'no-funkcional'nyj osteosintez pri posledstviyah zabolevanij i povrezhdenij kostej i sustavov [Extremely stable-functional osteosynthesis with the consequences of diseases and injuries of bones and joints.] Hirurgiya, 1994; 7: 36-38.
  3. Vagner M. Koncepciya operativnogo lecheniya perelomov [The concept of operative treatment of fractures.] Margo Anterior, 2006; 3: 115.
  4. Vil'yams D.F. Implantaty v hirurgii [Implants surgery .] per. s angl.. D.F. Vil'yams, R. Rouf. Moskva: Medicina, 1978; 716.
  5. Gercen G.I. Metallicheskie implanty v ortopedii i travmatologii: obzor literatury [Metal implants in orthopedics and traumatology: a review of the literature.] Moskva, 1986; 19.
  6. Zorya V.I. Nakostnyj kompressionno-dinamicheskij osteosintez pri perelomah kostej predplech'ya [Compression plate-dynamic osteosynthesis for fractures of the forearm.] Vestnik ortopedii i travmatologii, 1999; 4: 18-21.
  7. Lazarev A.F. Biologichnyj pogruzhnoj osteosintez na sovremennom ehtape [Submersible biological osteosynthesis at the present stage.] Vestnik travmatologii i ortopedii, 2003; 3: 20-27.
  8. Litvinov I.I. Osteosintez bedra i goleni monokortikal'nymi fiksatorami. Travmatologiya i ortopediya: sovremennost' i budushchee [Osteosynthesis of the femur and tibia monocortical clamps. Traumatology and Orthopaedics: present and future.] Moskva, 2003; 257.
  9. Litvinov I.I. Nakostnyj osteosintez perelomov bedrennoj kosti. Aktual'nye voprosy ortopedii, travmatologii i nejrohirurgii [Plate osteosynthesis of fractures of the femur. Actual problems of orthopedics, traumatology and neurosurgery.] Kazan', 2003; 149-151.
  10. Myuller M.E. Rukovodstvo po vnutrennemu osteosintezu [Manual internal osteosynthesis.] Moskva: Ad Marginem, 1996; 750.
  11. Sargsyan A.E. Soprotivlenie materialov, teorii uprugosti i plastichnosti [Mechanics of materials, theory of elasticity and plasticity.] Moskva: Vysshaya shkola, 2000; 286.
  12. Tihilov P.M. Osteosintez plastinami s uglovoj stabil'nost'yu vintov v lechenii ognestrel'nyh perelomov dlinnyh kostej konechnostej [Osteosynthesis plates with angular stability of screws in the treatment of gunshot fractures of the long bones of the limbs.] Travmatologiya i ortopediya Rossii, 2007; 2: 17-23.
  13. Tkachenko S.S. Vnutrennij osteosintez plastinami s primeneniem odnomomentnoj i dinamicheskoj kompressii. Vnutrennij osteosintez. Problemy i perspektivy razvitiya [Internal osteosynthesis plates with the use of one-stage and dynamic compression. Internal osteosynthesis. Problems and prospects of development.] materialy nauch.-prakt. konf. Sankt-Peterburg, 1995; 49-50.
  14. Travmatologii i ortopediya [Traumatology and orthopedics] ruk-vo dlya vrachej. pod red. YU.G. SHaposhnikova. Moskva, 1997; 2 778.
  15. Ul'yanov A.B. Nakostnyj kompressionno-dinamicheskij osteosintez diafizarnyh perelomov kostej predplech'ya [Compression plate-dynamic osteosynthesis of diaphyseal fractures of the forearm.] dis. … kand. med. nauk. Moskva, 2005; 94.
  16. Neubauer Th. The system plates with angular stability (LCP) new standard osteosynthesis. [The system plates with angular stability (LCP) new standard osteosynthesis.] Th. Neubauer, M. Wagner, Ch. Hammerbauer. Journal of Trauma and Orthopaedics, 2003; 3: 2735.
  17. Lenz M. et al. A biomechanical study on proximal plate fixation techniques in periprosthetic femur fractures. [A biomechanical study on proximal plate fixation techniques in periprosthetic femur fractures.] Injury, 2013; 10: 491-499.
  18. Goyal M. et al. A Comparative Evaluation of Fixation Techniques in Anterior Mandibular Fractures Using 2.0 mm Monocortical Titanium Miniplates Versus 2.4 mm Cortical Titanium Lag Screws. [A Comparative Evaluation of Fixation Techniques in Anterior Mandibular Fractures Using 2.0 mm Monocortical Titanium Miniplates Versus 2.4 mm Cortical Titanium Lag Screws.] J. Maxillofac. Oral Surg., 2012; 11: 4: 442-450.
  19. Adams J.E. et al. The biomechanics of fixation techniques for hand fractures. [The biomechanics of fixation techniques for hand fractures.] Hand Clin., 2013; 29: 4: 493-500.
  20. Samani S.S. et al. Application of Orthopedic Dual Sliding Compression Plate (ODSCP) in High Medial Tibial Open Wedge Osteotomies. [Application of Orthopedic Dual Sliding Compression Plate (ODSCP) in High Medial Tibial Open Wedge Osteotomies.] Iran. Red. Crescent. Med. J., 2013; 15: 4: 335-339.
  21. Hoffmann M.F. et al. Clinical outcomes of locked plating of distal femoral fractures in a retrospective cohort. [Clinical outcomes of locked plating of distal femoral fractures in a retrospective cohort.] J. Orthop. Surg. Res., 2013; 27: 8: 43.
  22. Xiong Y. et al. Comparison of interface contact profiles of a new minimum contact locking compression plate and the limited contact dynamic compression plate. [Comparison of interface contact profiles of a new minimum contact locking compression plate and the limited contact dynamic compression plate.] Int. Orthop., 2010; 34: 5: 715-718.
  23. Miramini S. et al. Computational simulation of the early stage of bone healing under different configurations of lockingcompression plates. [Computational simulation of the early stage of bone healing under different configurations of lockingcompression plates.] Comput. Methods Biomech. Biomed. Engin., 2013; 11: 21.
  24. Schandelmaier P. et al. Distal femoral fractures and LISS stabilization. [Distal femoral fractures and LISS stabilization.] Injury, 2001; 32: 3: 55-63.
  25. Goodrich L.R. et al. Dynamic Compression Plate (DCP) fixation of propagating medial condylar fractures of the third metacarpal/metatarsal bone in 30 racehorses: retrospective analysis (1990-2005). [Dynamic Compression Plate (DCP) fixation of propagating medial condylar fractures of the third metacarpal/metatarsal bone in 30 racehorses: retrospective analysis (1990-2005).] Equine Vet. J., 2013; 9: 9.
  26. Bottlang M. et al. Dynamic Fixation of Distal Femur Fractures using Far Cortical Locking Screws: A Prospective Observational Study. [Dynamic Fixation of Distal Femur Fractures using Far Cortical Locking Screws: A Prospective Observational Study.] J. Orthop. Trauma, 2013; 11: 13.
  27. Peini C. et al. Effect of plate working length on plate stiffness and cyclic fatigue life in a cadaveric femoral fracture gap model stabilized with a 12-hole 2.4 mm locking compression plate. BMC Vet. [Effect of plate working length on plate stiffness and cyclic fatigue life in a cadaveric femoral fracture gap model stabilized with a 12-hole 2.4 mm locking compression plate. BMC Vet.] Res., 2013; 9: 6148-6149.
  28. Bastian J.D. et al. Extracortical plate fixation with new plate inserts and cerclage wires for the treatment of periprosthetic hip fractures. [Extracortical plate fixation with new plate inserts and cerclage wires for the treatment of periprosthetic hip fractures.] Int. Orthop., 10: 5.
  29. Kim J.J. et al. Factors affecting accurate drill sleeve insertion in locking compression plates. Orthop. Traumatol. [Factors affecting accurate drill sleeve insertion in locking compression plates. Orthop. Traumatol.] Surg. Res., 2013; 99: 7: 823-827.
  30. Z. Ries et al. Healing results of periprosthetic distal femur fractures treated with far cortical locking technology: a preliminary retrospective study. [Healing results of periprosthetic distal femur fractures treated with far cortical locking technology: a preliminary retrospective study.] Orthop. J., 2013; 33: 7-11.
  31. Ma J. et al. Intramedullary Nail versus Dynamic Compression Plate Fixation in Treating Humeral Shaft Fractures: Grading the Evidence through a Meta-Analysis. [Intramedullary Nail versus Dynamic Compression Plate Fixation in Treating Humeral Shaft Fractures: Grading the Evidence through a Meta-Analysis.] PLoS One, 2013; 8; 12: 75-82.32. Schutz M. et al. Less invasive stabilization system (LISS) in the treatment of distal femoral fractures. Acta Chir. Orthop. Traumatol. Cech., 2003; 70: 2: 74-82.
  32. Jain J.K. et al. Locked Compression Plating for Peri- and Intra-articular Fractures Around the Knee. Orthop. [Locked Compression Plating for Peri- and Intra-articular Fractures Around the Knee. Orthop.] Surg., 2013; 5: 4: 255-260.
  33. Tsukada S. et al. Locking versus non-locking neutralization plates for treatment of lateral malleolar fractures: a randomized controlled trial. [Locking versus non-locking neutralization plates for treatment of lateral malleolar fractures: a randomized controlled trial.] Int. Orthop., 2013; 9: 28.
  34. Arumilli B. et al. Long PHILOS plate fixation in a series of humeral fractures. [Long PHILOS plate fixation in a series of humeral fractures.] Eur. J. Orthop. Surg. Traumatol., 2013; 10: 2.
  35. Lenz M. et al. Mechanical behavior of fixation components for periprosthetic fracturesurgery. [Mechanical behavior of fixation components for periprosthetic fracturesurgery.] Clin. Biomech. (Bristol, Avon), 2013; 28: 9-10: 988-993.
  36. Goetzen M. et al. Metaphyseal screw augmentation with PMMA of the LISS-PLT plate improves angular stability in osteoporotic proximal third tibia fractures - a biomechanical study in human cadaveric tibiae. [Metaphyseal screw augmentation with PMMA of the LISS-PLT plate improves angular stability in osteoporotic proximal third tibia fractures - a biomechanical study in human cadaveric tibiae.] J. Orthop. Traumat., 2013; 9: 26.
  37. Piątkowski K. et al. Outcome of comminuted proximal humerus fracture treatment with locking compression plate. [Outcome of comminuted proximal humerus fracture treatment with locking compression plate.] Pol. Orthop. Traumatol., 2013; 15: 78: 239-246.
  38. Pai S., Shetty M.S., Kumar M.A. Internal fixation of fractures of both bones forearm: Comparison of locked compression and limited contact dynamic compression plate. [Internal fixation of fractures of both bones forearm: Comparison of locked compression and limited contact dynamic compression plate.] Indian J. Orthop., 2013; 47: 6: 643.
  39. Mudussar A.A. et al. Percutaneous locking plates for fractures of the distal tibia: our experience and a review of the literature. [Percutaneous locking plates for fractures of the distal tibia: our experience and a review of the literature.] J. Trauma Acute Care Surg., 2012; 72: 81-87.
  40. Ockert B. et al. Position of polyaxial versus monoaxial screws in locked plating for proximal humeral fractures: analysis of a prospective randomized study. [Position of polyaxial versus monoaxial screws in locked plating for proximal humeral fractures: analysis of a prospective randomized study.] Eur. J. Orthop. Surg. Traumatol., 2013; 11: 20.
  41. Rodriguez E.K. et al. Predictive factors of distal femoral fracture nonunion after lateral locked plating: A retrospective multicenter case-control study of 283 fractures. [Predictive factors of distal femoral fracture nonunion after lateral locked plating: A retrospective multicenter case-control study of 283 fractures.] Injury, 2013; 11: 519.
  42. Carron M.A. et al. Stability of Midface Fracture Repair Using Absorbable Plate and Screw System Pilot Holes Drilled and Pin Placement at Angles Other Than 90°. [Stability of Midface Fracture Repair Using Absorbable Plate and Screw System Pilot Holes Drilled and Pin Placement at Angles Other Than 90°.] JAMA Facial Plast. Surg., 2013; 10: 24.
  43. Samora W.P. et al. Submuscular bridge plating for lengthunstable, pediatric femur fractures. [Submuscular bridge plating for lengthunstable, pediatric femur fractures.] J. Pediatr. Orthop., 2013; 33: 8: 797-802.
  44. Perren S.M. et al. The limited contact dynamic compression plate (LC-DCP). Arch. Orthop. Traum. [The limited contact dynamic compression plate (LC-DCP). Arch. Orthop. Traum.] Surg., 1990; 109: 30.
  45. Nautiyal V.P. et al. Tissue response to titanium implant using scanning electron microscope. [Tissue response to titanium implant using scanning electron microscope.] J. Maxillofac. Surg., 2013; 4: 1: 7-12.
  46. Van Olden G.D. VA-LCP anterior clavicle plate: The anatomically precontoured fixation system with angular stability for clavicle shaft. [VA-LCP anterior clavicle plate: The anatomically precontoured fixation system with angular stability for clavicle shaft.] Musculoskelet. Surg., 2013; 10: 27.
  47. Wagner M. General principles for the clinical use of the LCP. [General principles for the clinical use of the LCP.] Ibid., 2003; 34: 2: 31-42

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 .

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies